Loss of β2-spectrin prevents cardiomyocyte differentiation and heart development.

نویسندگان

  • Jeong A Lim
  • Hye Jung Baek
  • Moon Sun Jang
  • Eun Kyoung Choi
  • Yong Min Lee
  • Sang Jin Lee
  • Sung Chul Lim
  • Joo Young Kim
  • Tae Hyun Kim
  • Hye Sun Kim
  • Lopa Mishra
  • Sang Soo Kim
چکیده

AIMS β2-Spectrin is an actin-binding protein that plays an important role in membrane integrity and the transforming growth factor (TGF)-β signalling pathway as an adaptor for Smads. Loss of β2-spectrin in mice (Spnb2(-/-)) results in embryonic lethality with gastrointestinal, liver, neural, and heart abnormalities that are similar to those in Smad2(+/-)Smad3(+/-) mice. However, to date, the role of β2-spectrin in embryogenesis, particularly in heart development, has been poorly delineated. Here, we demonstrated that β2-spectrin is required for the survival and differentiation of cardiomyocytes, and its loss resulted in defects in heart development with failure of ventricular wall thickening. METHODS AND RESULTS Disruption of β2-spectrin in primary muscle cells not only inhibited TGF-β/Smad signalling, but also reduced the expression of the cardiomyocyte differentiation markers Nkx2.5, dystrophin, and α-smooth muscle actin (α-SMA). Furthermore, cytoskeletal networks of dystrophin, F-actin, and α-SMA in cardiomyocytes were disorganized upon loss of β2-spectrin. In addition, deletion of β2-spectrin in mice (Spnb2(tm1a/tm1a)) prevented proper development of the heart in association with disintegration of dystrophin structure and markedly reduced survival. CONCLUSION These data suggest that β2-spectrin deficiency leads to inactivation of TGF-β/Smad signalling and contributes to dysregulation of the cell cycle, proliferation, differentiation, and the cytoskeletal network, and it leads to defective heart development. Our data demonstrate that β2-spectrin is required for proper development of the heart and that disruption of β2-spectrin is a potential underlying cause of congenital heart defects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dysfunction of the β2-spectrin-based pathway in human heart failure.

β2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of β2-spectrin for vertebrate function is illustrated by dysfunction of β2-spectrin-based pathways in disease. Recently, defects in β2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of β2-spectrin ...

متن کامل

Caspase-3/7-mediated Cleavage of β2-spectrin is Required for Acetaminophen-induced Liver Damage.

UNLABELLED The ubiquitously expressed β2-spectrin (β2SP, SPTBN1) is the most common non-erythrocytic member of the β-spectrin gene family. Loss of β2-spectrin leads to defects in liver development, and its haploinsufficiency spontaneously leads to chronic liver disease and the eventual development of hepatocellular cancer. However, the specific role of β2-spectrin in liver homeostasis remains t...

متن کامل

Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells

Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...

متن کامل

Ankyrin-B Interactions with Spectrin and Dynactin-4 Are Required for Dystrophin-based Protection of Skeletal Muscle from Exercise Injury*

Costameres are cellular sites of mechanotransduction in heart and skeletal muscle where dystrophin and its membrane-spanning partner dystroglycan distribute intracellular contractile forces into the surrounding extracellular matrix. Resolution of a functional costamere interactome is still limited but likely to be critical for understanding forms of muscular dystrophy and cardiomyopathy. Dystro...

متن کامل

P-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs

Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 101 1  شماره 

صفحات  -

تاریخ انتشار 2014